On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote beta-hematin synthesis.
نویسنده
چکیده
The ferriprotoporphyrin IX (FP) molecules released by intraerythrocytic malaria parasites during hemoglobin digestion are converted to beta-hematin and are stored in the parasites' food vacuoles. It has been demonstrated in cell-free medium that the incorporation of FP into beta-hematin under physiological conditions requires a catalyst from parasite lysates or pre-formed beta-hematin. In the present studies, lysates of Plasmodium falciparum-infected erythrocytes were suspended in 1 M NaOH and were washed with phosphate buffer, pH 7.6. When the cell extracts were incubated with hematin in 0.5 M sodium acetate buffer, pH 5, for 20 hr at 37 degrees C, a large quantity of beta-hematin was formed. To determine whether parasite components were necessary for the beta-hematin formation, normal erythrocyte ghosts were similarly treated with 1 M NaOH and then incubated with hematin. In repeated experiments it was found that, on the average, 70% of the hematin was converted to beta-hematin. Membranes treated with HCl or CH(3)COOH also promoted the formation of beta-hematin, while untreated membranes were ineffective. The possibility that metabolic activities in the food vacuoles of malaria parasites may activate membrane fragments, from hemoglobin vesicles, to promote beta-hematin formation is discussed in this paper.
منابع مشابه
Terpenoid Compounds and Anti- Hemozoin and Anti- Ciliates Protozians Effects of Artemisia annua L. and Chenopodium botrys L.
Background: β-Hematin (Hemozoin) was synthised inside human erythrocyte by malaria parasite. The parasite avoids the toxic effects by polymerizing heme molecules into insoluble crystalline β-Hematin. C. botrys and A. annua used for the treatment of diseases like malaria, hepatitis, cancers, and inflammations. Objective: Determine of antimalarial and anti-protozoa effects of A. anuuae and C. bo...
متن کاملMalaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9.
Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. "Synthetic" HZ (beta-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the ...
متن کاملPhospholipid Membrane-Mediated Hemozoin Formation: The Effects of Physical Properties and Evidence of Membrane Surrounding Hemozoin
Phospholipid membranes are thought to be one of the main inducers of hemozoin formation in Plasmodia and other blood-feeding parasites. The "membrane surrounding hemozoin" has been observed in infected cells but has not been observed in in vitro experiments. This study focused on observing the association of phospholipid membranes and synthetic β-hematin, which is chemically identical to hemozo...
متن کاملCrystal nucleation, growth, and morphology of the synthetic malaria pigment beta-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs.
The morphology of micrometer-sized beta-hematin crystals (synthetic malaria pigment) was determined by TEM images and diffraction, and by grazing incidence synchrotron X-ray diffraction at the air-water interface. The needle-like crystals are bounded by sharp {100} and {010} side faces, and capped by {011} and, to a lesser extent, by {001} end faces, in agreement with hemozoin (malaria pigment)...
متن کاملMagnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis.
Hemozoin is a by-product of malaria infection in erythrocytes, which has been explored as a biomarker for early malaria diagnosis. We report magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin crystals, which are the equivalent of hemozoin biocrystals in spectroscopic features, by using magnetic nanoparticles with iron oxide core and silver shell (Fe(3)O(4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental biology and medicine
دوره 226 8 شماره
صفحات -
تاریخ انتشار 2001